
N I X D O R F
C O M P U T E R

TARGON® /35

UNIX Operating System
Release Description 1.0

Ausgabe 1. 1. 1986 Bestell-Nr. 10128.00.2.93

In
 o

rd
er

 to
 e

ns
ur

e
yo

ur
 in

cl
us

io
n

in
 th

e
di

st
rib

ut
io

n
lis

t f
or

 y
ou

r r
ev

is
io

n
Se

rv
ic

e,
 p

le
as

e
se

nd
 u

s
th

is
 c

ar
d.

Yo
ur

 N
ix

do
rf

br
an

ch
 is

 re
sp

on
si

bl
e

fo
r s

en
di

ng
 m

od
ifi

ca
tio

ns
.

P
os

tc
ar

d

N
ix

do
rf

C
om

pu
te

r A
G

A
bt

. Z
S

I
Fü

rs
te

na
lle

e
7

D
-4

79
0

P
ad

er
bo

rn
W

es
t-

G
er

m
an

y

Pl
ea

se
 s

en
d

an
y

m
od

ifi
ca

tio
ns

 S
up

pl
em

en
ts

 to
th

is
 d

oc
um

en
t t

o
th

e
fo

llo
w

in
g

ad
dr

es
s.

Th
e

N
ix

do
rf

br
an

ch
 re

sp
on

si
bl

e
(m

us
t b

e
st

at
ed

):

N
am

e:

In
 C

om
pa

ny
:

O
r N

C
A

G
 d

ep
t.:

R
ef

er
en

ce
 n

um
be

r:

10
12

8.
00

.2
.9

3

D
at

e
of

 is
su

e
of

 th
e

la
st

 re
vi

si
on

 a
s

pe
r

m
od

ifi
ca

tio
n

sh
ee

t (
m

us
t b

e
st

at
ed

):

Se
pa

ra
te

 a
nd

 in
se

rt
in

po
ck

et
 o

n
sp

in
e

of
 b

oo
k.

S
ys

te
m

s
Li

te
ra

tu
 re

TA
R

G
O

N
®

 7
35

UNIX Operating System Overview

Procedure Call Mechanism

Language Support

UNIX Operating System Commands and Facilities

Appendix Index

N I X D O R F
C O M P U T E R

01.01.86 UNIX Operating System Release Description Page 0-1

Modifications Sheet

Modifications sheet
&

This sheet lists all modifications made to this module since the
appearance of the first edition. It should be replaced by the new sheet
provided whenever further modifications are announced.

First edition 01.01.86 Rel. 1

©
 C

op
yi

ng
 o

f t
hi

s
do

cu
m

en
t,

an
d

gi
vi

ng
 it

 t
o

ot
he

rs
 a

nd
 th

e
us

e
or

 c
om

m
un

ic
at

io
n

of
 th

e
co

nt
en

ts
 th

er
eo

f,
ar

e
fo

rb
id

de
n

w
ith

ou
t

ex
pr

es
s

au
th

or
ity

. O
ffe

nd
er

s
ar

e
lia

bl
e

to
 th

e
pa

ym
en

t o
f d

am
ag

es
. A

ll r
ig

ht
s

ar
e

re
se

rv
ed

 in
 th

e
ev

en
t o

f t
he

gr
an

t o
f a

 p
at

en
t o

r t
he

 re
gi

st
ra

tio
n

of
 a

 u
til

ity
 m

od
el

 o
r d

es
ig

n.

N I X D O R F
C O M P U T E R

01.01.86 UNIX Operating System Release Description Page 0-3

Errors/Suggestions for Improvement

Errors/suggestions for improvement

If you have noticed any errors while using this pari of the Systems
literature or if you have any suggestions for the improvement of the
module, please send your written comments to the following address:

Nixdorf Computer AG
Abt. ZSI
Fürstenallee 7

D-4790 Paderborn

©
Co

py
in

g
of

 t
hi

s
do

cu
m

en
t,

an
d

gi
vi

ng
 it

 to
 o

th
er

s
an

d
th

e
us

e
or

 c
om

m
un

ic
at

io
n

of
 t

he
 c

on
te

nt
s

th
er

eo
f,

ar
e

fo
rb

id
de

n
w

ith
ou

t
ex

pr
es

s
au

th
or

ity
.

O
ffe

nd
er

s
ar

e
lia

bl
e

to
 th

e
pa

ym
en

t
of

 d
am

ag
es

.
A

ll r
ig

ht
s

ar
e

re
se

rv
ed

 i
n

th
e

ev
en

t
of

 th
e

gr
an

t
of

 a
 p

at
en

t
or

 th
e

re
gi

st
ra

tio
n

of
 a

 u
til

ity
 m

od
el

 o
r d

es
ig

n.

N I X D O R F
C O M P U T E R

01.01.86 UNIX Operating System Release Description Page 0-5

Contents

1 UNIX Operating System Overview.. 1-1
1.1 Features ... 1-1
1.2 Implementation of UNIX System V and 4.2BSD 1-3
1.3 Effect on Machine-Dependent Programs... 1-4
1.4 Commands and Facilities... 1-4

2 Procedure Call Mechamsm.. 2-1
2.1 Parameter-Passing Mechanism ... 2-1
2.2 Assigning Parameters and Return Values to Registers....................... 2-4
2.3 Floating Point Mechanism.. 2-6
2.3.1 Using Variables and Assignment Statements...................................... 2-6

3 Language Support ... 3-1
3.1 C Support... 3-1
3.2 Implementation of Language Support Features 3-1
3.2.1 Format of a.out and ar files.. 3-2
3.3 Effects of TARGON /35 Architecture on Application Programs 3-3
3.3.1 Performing Shift Operations in C .. 3-3
3.3.2 Passing Parameters ... 3-3
3.3.3 Implementing Varargs Macros in the Varargs.h Header...................... 3-7
3.3.4 Addressing Bytes in a Specific Order ... 3-8
3.3.5 Evaluating Parameters in a Specific Order.. 3-9
3.3.6 Setting Local Auto Variables.. 3-13
3.3.7 Storing Data Structures ... 3-13

4 UNIX Operating System Commands and Facilities 4-1

Appendix Index .. A-1

©
Co

py
in

g
of

 th
is

 d
oc

um
en

t,
an

d
gi

vi
ng

 it
 to

 o
th

er
s

an
d

th
e

us
e

or
 c

om
m

un
ic

at
io

n
of

 th
e

co
nt

en
ts

th

er
eo

f,
ar

e
fo

rb
id

de
n

w
ith

ou
t

ex
pr

es
s

au
th

or
ity

.
O

ffe
nd

er
s

ar
e

lia
bl

e
to

 th
e

pa
ym

en
t

of
 d

am
ag

es
.

A
ll

rig
ht

s
ar

e
re

se
rv

ed
 i

n
th

e
ev

en
t

of
 th

e
gr

an
t o

f a
 p

at
en

t
or

 th
e

re
gi

st
ra

tio
n

of
 a

 U
til

ity
 m

od
el

 o
r d

es
ig

n.

Page 0-6 UNIX Operating System Release Description 01.01.86

Preface

This manual discusses the features and facilities included in the Nix
dorf UNIX™ (UNIX is a trademark of Bell Laboratories) Operating Sys
tem, release 1.0. Also included is a discussion of the TARGON /35
parameter-passing mechanism and its effect on the execution of pro-
grams written in C.

This document is written for an application or Systems programmer
experienced in using the UNIX Operating System and in understanding
UNIX Operating System concepts.

This document contains four chapters:

• Chapter 1 - UNIX Operating System Overview. This chapter lists the
major features of the UNIX Operating System.

• Chapter 2 — Procedure Call Mechanism. This chapter discusses
three aspects of the TARGON /35 System architecture: the
parameter-passing mechanism, the registers to which the Parame
ters and return values are assigned, and the floating point mechan
ism.

• Chapter 3 - Language Support. This chapter describes specific
ways in which the C language Compiler of the UNIX Operating Sys
tem differs from that of UNIX System V or 4.2BSD.

• Chapter 4 - UNIX Operating System Commands and Facilities. This
chapter briefly describes the commands and facilities that are avail-
able with the UNIX Operating System.

N I X D O R F
C O M P U T E R

01.01.86 UNIX Operating System Release Description Page 1-1

UNIX Operating System Overview

UNIX Operating System Overview

The UNIX Operating System on the TARGON /35 System is a general
purpose, multi-user System supporting large applications and distri-
buted processing. The Operating System combines AT&T Bell Labora
tories UNIX System V with the University of California, Berkeley 4.2BSD
enhancements to provide the user with a comprehensive System based
on the UNIX Operating System.

For Information on how to install the Nixdorf UNIX Operating System,
see the Nixdorf manual "System Administrators Guide”.

©
Co

py
in

g
of

 th
is

 d
oc

um
en

t,
an

d
gi

vi
ng

 it
 t

o
ot

he
rs

 a
nd

 t
he

 u
se

 o
r c

om
m

un
ic

at
io

n
of

 th
e

co
nt

en
ts

 t
he

re
of

,
ar

e
fo

rb
id

de
n

w
ith

ou
t

ex
pr

es
s

au
th

or
ity

.
O

ffe
nd

er
s

ar
e

lia
bl

e
to

 th
e

pa
ym

en
t

of
 d

am
ag

es
.

A
ll

rig
ht

s
ar

e
re

se
rv

ed
 i

n
th

e
ev

en
t

of
 th

e
gr

an
t

of
 a

 p
at

en
t

or
 th

e
re

gi
st

ra
tio

n
of

 a
 u

til
ity

 m
od

el
 o

r d
es

ig
n.

Features

The UNIX Operating System kernel incorporates all of the performance
enhancements of 4.2BSD, yet remains fully compatible with System V.
In this way, the UNIX Operating System öfters the 4.2BSD features of
virtual ' memory and disk I/O performance needed to run the UNIX
Operating System effectively on large machines, while at the same
time providing the System V tools needed to run the UNIX Operating
System within commercial environments. The UNIX Operating System
also provides a Common Language Environment (OLE) which allows
users to develop and execute programs written in C, FORTRAN, and
Pascal with maximum efficiency on the TARGON /35. Nixdorf enhance
ments to the UNIX Operating System, specifically designed to improve
performance on the TARGON /35, are included.

The major features of the Nixdorf UNIX Operating System are:
• Virtual Memory. Supports demand paging providing up to 4 Gbytes

of directly addressable space per process.
• C Language. Supports multple data types and program Utilities.
• Shell Command Language. Provides user Interface to the UNIX

Operating System.
• C Shell Command Language. Provides additional Shell capabilities of

job control and historical references.

1.1

Page 1-2 UNIX Operating System Release Description 01.01.86

UNIX Operating System Overview

• Programmer’s Workbench. Provides Source Code Control System
(SCCS), Compiler development tools, ”desk calculator” Utilities,
high-level language macro-processors, and text pattem manipulation
routines.

• Document Preparation. A line-oriented editor (ed), text formatting
and typesetting Utilities (nroff and troff), and memorandum macros
(MM).

• Full-screen Interactive Editor. Supports a sophisticated, easy-to-use
full-screen editor (vi).

• System Activity Package. Gathers System activity data and gen-
erates reports.

• I/O Subsystem Auto-configuration. Automatically configures I/O
Channels, subchannels, disk drives, and ITPs.

• Termcap. Data base and routines allowing almost any asynchronous
terminal to be used with the TARGON /35.

The UNIX Operating System provides various facilities for the develop
ment and execution of C. These facilities currently provide symbolic
debugging, code generation, and runtime execution.

Another feature included in the UNIX Operating System is the uucp
Utility, which permits communication between two or more UNIX Sys
tems. To use the uucp Utility successfully, see the Nixdorf manual
"UUCP - UNIX to UNIX copy”.

1.1

N I X D O R F
C O M P U T E R

01.01.86 UNIX Operating System Release Description Page 1-3

UNIX Operating System Overview

Implementation of UNIX System V and 4.2BSD

The TARGON /35 Supports both AT&T Bell Laboratories UNIX System V
and the University of California, Berkeley 4.2BSD enhancements to the
UNIX Operating System. This unique, dual-port System allows a user to
use the features of either System V or 4.2BSD, or a combination of
both. To provide this capability to the user, Nixdorf has implemented
an interface within the UNIX Operating System that allows users to
execute commands and develop programs in more than one environ-
ment, or "universe.”

Currently, the UNIX Operating System supports two universes - Sys
tem V (att) and 4.2BSD (ucb). These two universes coexist within the
same file structure and share a common 4.2BSD kernel. At any time,
the user can operate in either the att or the ucb universe. The universe
command allows the user to set or change the UNIX Operating System
environment in which he or she operates. Specific information on how
to establish a universe is contained in the Nixdorf manual "System
Administrators Guide” and the procedures for using these universes
are described in the UNIX Operating System online manual pages.

©
Co

py
in

g
of

 th
is

 d
oc

um
en

t,
an

d
gi

vi
ng

 it
 to

 o
th

er
s

an
d

th
e

us
e

or
 c

om
m

un
ic

at
io

n
of

 th
e

co
nt

en
ts

 t
he

re
of

,
ar

e
fo

rb
id

de
n

w
ith

ou
t

ex
pr

es
s

au
th

or
ity

.
O

ffe
nd

er
s

ar
e

lia
bl

e
to

 th
e

pa
ym

en
t

of
 d

am
ag

es
.

A
ll

rig
ht

s
ar

e
re

se
rv

ed
 i

n
th

e
ev

en
t

of
 th

e
gr

an
t

of
 a

 p
at

en
t

or
 th

e
re

gi
st

ra
tio

n
of

 a
 U

til
ity

 m
od

el
 o

r d
es

ig
n.

1.2

Page 1-4 UNIX Operating System Release Description 01.01.86

UNIX Operating System Overview

1.3 Effect on Machine-Dependent Programs

Nixdorf’s Implementation of C, combined with the unique TARGON /35
architecture, may require programmers to modify their machine-
dependent programs in specific ways to ensure proper program execu-
tion. The specific aspects of the UNIX Operating System that may
affect machine-dependent programs are:

• fileformats

• block size

• performance of shift operations

• passing of arguments

• implementation of varargs macros in the varargs.h header
• performing of I/O to or from local variables or Parameters
• order in which bytes are addressed

• order of parameter evaluation
• setting of local auto variables

1.4 Commands and Facilities

The UNIX Operating System provides complete sets of both System V
and 4.2BSD Utilities, System calls, libraries, and files. Some of these
facilities have been enhanced and new facilities have been created to
enable users to develop and execute programs quickly and efficiently
on the TARGON /35 System. These commands and facilities are dis-
cussed in Chapter "UNIX Operating System Commands and Facilities”
and available as online manual pages.

1.4

N I X D O R F
C O M P U T E R

01.01.86 UNIX Operating System Release Description Page 2-1

Procedure Call Mechanism

Procedure Call Mechanism

The current parameter-passing mechanism on the TARGON /35 archi-
tecture differs from that of other machines by providing fast procedure
calls and fast access to procedure Parameters and local variables. For
those programming in C, this difference causes machine-dependent
programs to behave differently on the Nixdorf machine than on other
machines, specifically because of the way that data is stored in
Parameter and local variable registers. To understand the effect of
UNIX Operating System calling sequences on programs, it is necessary
to discuss the way in which the TARGON /35 passes Parameters and
assigns them to registers.

©
Co

py
in

g
of

 th
is

 d
oc

um
en

t,
an

d
gi

vi
ng

 it
 to

 o
th

er
s

an
d

th
e

us
e

or
 c

om
m

un
ic

at
io

n
of

 th
e

co
nt

en
ts

 t
he

re
of

,
ar

e
fo

rb
id

de
n

w
ith

ou
t

ex
pr

es
s

au
th

or
ity

.
O

ffe
nd

er
s

ar
e

lia
bl

e
to

 th
e

pa
ym

en
t

of
 d

am
ag

es
.

A
ll

rig
ht

s
ar

e
re

se
rv

ed
 i

n
th

e
ev

en
t

of
 th

e
gr

an
t

of
 a

 p
at

en
t

or
 th

e
re

gi
st

ra
tio

n
of

 a
 U

til
ity

 m
od

el
 o

r d
es

ig
n.

Parameter-Passing Mechanism

The architecture of the TARGON /35 includes separate Stacks, known
as control and data Stacks. These Stacks minimize memory references
by providing temporary storage for procedure Parameters, local vari
ables, and local data structures. The processor uses one control stack
and two data Stacks for each process in the System. (One data stack
is used in user mode and a second data stack in kernel mode.)

A control stack consists of a number of 32-word control stack frames,
each containing parameter registers (16 words) and local variable
registers (16 words).

The processor uses the control stack frame to:
• störe procedure Parameters, temporary values, and procedure link-

age information
• störe frequently-used local variables

The current frame consists of 48 words, since it also includes the first
16 words of the next frame. These 16 words are accessed as tem
porary registers. A control stack frame is allocated for each procedure
call and deallocated for each procedure return.

2.1

Page 2-2 UNIX Operating System Release Description 01.01.86

Procedure Call Mechanism

A data stack is used as an extension of the corresponding control
stack. All Parameters and local data which are not in the control stack
(because of the fixed-size control stack frame) are stored in the data
stack.

2.1

N I X D O R F
C O M P U T E R

CM
01.01.86 UNIX Operating System Release Description Page 2-3

Procedure Call Mechanism

Figure 2-1: TARGON /35 Control Stack

CONTROL STACK

TR 2
TR 1
TRO

LR 15

LR1
LRO

PR 15

PR1
PROCSP ------------------►

LR 15

L R 1
LRO

PR 15

PR 1
PRO

LR 15

©
 C

op
yi

ng
 o

f t
hi

s
do

cu
m

en
t,

an
d

gi
vi

ng
 it

 to
 o

th
er

s
an

d
th

e
us

e
or

 c
om

m
un

ic
at

io
n

of
 th

e
co

nt
en

ts
 th

er
eo

f,
ar

e
fo

rb
id

de
n

w
ith

ou
t

ex
pr

es
s

au
th

or
ity

. O
ffe

nd
er

s
ar

e
lia

bl
e

to
 th

e
pa

ym
en

t o
f d

am
ag

es
. A

ll r
ig

ht
s

ar
e

re
se

rv
ed

 in
 th

e
ev

en
t o

f t
he

gr
an

t o
f a

 p
at

en
t o

r t
he

 re
gi

st
ra

tio
n

of
 a

 U
til

ity
 m

od
el

 o
r d

es
ig

n.

LR 2
LR 1
LRO

PR 15

NEXT CONTROL
STACK FRAME

(FOR THE T
LOCATIONS ACCESSIBLE

AS TEMPORARY REGISTERS

PROCEDURE
BEING CALLED)

PR 2
PR1
PRO __________] L CURRENT

A _______________ CONTROL
STACK FRAME

LOCATIONS ACCESSIBLE (FOR THE
AS LOCAL REGISTERS CURRENTLY

EXECUTING
___________2 L PROCEDURE)

LOCATIONS ACCESSIBLE
AS PARAMETER REGISTERS

I

LOCATIONS ACCESSIBLE
AS MEMORY LOCATIONS

(BY THEIR VIRTUAL ADDRESSES)FIRST CONTROL
STACK FRAME

2.1

Page 2-4 UNIX Operating System Release Description 01.01.86

Procedure Call Mechanism

2.2 Assigning Parameters and Return Values to Registers

Parameters and return values are assigned, in ascending order, to
registers trO/prO through tr 1 1/pr1 1 in the following ways:

• int, long, unsigned int, unsigned long, and float Parameters
Int, long, unsigned int, unsigned long, and float Parameters are
directly moved into available temporary/parameter registers. If regis
ters are not available, these Parameters are moved into word-aligned
data stack locations.

• char and short Parameters
Char and short Parameters are sign-extended into available
temporary/parameter registers. If registers are not available, these
Parameters are moved into word-aligned data stack locations.

• unsigned char and short Parameters
Unsigned char and short Parameters are moved and zero-extended
into available temporary/parameter registers. If registers are not
available, these Parameters are moved into word-aligned data stack
locations.

• double Parameters
Double Parameters are moved into adjacent parameter registers
when available. (These registers are not required to be even/odd
pairs.) If an adjacent register pair is not available, these double
Parameters are moved into word-aligned data stack locations.
Note: If tr1 1/pr1 1 (a temporary/parameter register) is available but

cannot be allocated to the next double parameter, the double
Parameter is pushed onto the data stack and the tr11/pr11
register is not used for passing Parameters.

• structure and union Parameters (struct/union Parameters)
Struct/union Parameters are always pushed onto the data stack,
regardless of whether or not they will fit into either a single register
or a register pair.

2.2

N I X D O R F
C O M P U T E R

01.01.86 UNIX Operating System Release Description Page 2-5

Procedure Call Mechanism

• array Parameters

Array Parameters are treated as pointers to the corresponding data
type with a value corresponding to the array base.

• pointer Parameters
All pointer Parameters are directly moved into available
temporary/parameter registers. If registers are not available, these
Parameters are moved into word-aligned data stack locations.

• structure returns
Structure returns pass a pointer to a static region containing the
return structure. This pointer is in register trO/prO.

• scalar and float returns
Scalar and float returns are assigned to register trO/prO. Double
returns are assigned to register (trO-tr 1)/(pr0-pr1).

Besides the registers used for storing the Parameters noted above,
additional temporary registers are reserved for specific functions.
These registers and their functions are:
TR 12 Reserved for use with the SSL instruction, that is, for

static block structure references.
TR 13 Reserved for computing the address of the called sub-

routine, such as for calling a register variable.
TR 14 & 15 Cannot be used since they can be destroyed at any time

by an Interrupt.

Note: Subroutines that ”know” that they have data stack Parameters
must perform an ADSF instruction upon entry.

ot
he

rs
 a

nd
 t

he
 u

se
 o

r c
om

m
un

ic
at

io
n

lo
ut

ex

pr
es

s
au

th
or

ity
.

O
ffe

nd
er

s
ar

e
ev

en
t

of
 th

e

Co
py

in
g

of
 th

is
 d

oc
um

en
t,

an
d

of
 t

he
 c

on
te

nt
s

th
er

eo
f

lia
bl

e
to

 th
e

pa
ym

en
t

oi
gr

an
t

of
 a

 p
at

en
t

or
 th

e

2.2

Page 2-6 UNIX Operating System Release Description 01.01.86

Procedure Call Mechanism

2.3 Floating Point Mechanism

The UNIX Operating System includes a floating point mechanism
based on the IEEE floating point Standard.

To ensure proper program execution on the TARGON /35, the user
must use appropriate variables and explicit assignment Statements.
The required method for printing hexadecimal or binary versions of a
floating point variable is explained below.

2.3.1 Using Variables and Assignment Statements

On some UNIX-based machines, a non-standard floating point
representation is used. A feature of these non-standard representa-
tions is that for both single and double precision numbers, the same
number of bits is used to represent the exponent. Thus, if the user has
a double precision variable and wants to print the single precision
value, the user must print out only the high-order word.

Because the IEEE floating point Standard uses different representa-
tions for single and double precision values, the user must be careful
to force conversions through appropriate variables and explicit assign
ment Statements. For example, to extract a hexadecimal representation
of a floating point variable, the following is incorrect:

printf(”%x”, a_float)

This Statement is incorrect because the float argument to printf is first
promoted to a double precision value.

Thus, the hexadecimal value, which would normally be printed, is the
high-order portion of a double precision variable and not a floating
point variable. Figure 2-2 shows code that will correctly print the
binary representation of a float number.

2.3.1

N I X D O R F
C O M P U T E R

01.01.86 UNIX Operating System Release Description Page 2-7

Procedure Call Mechanism

Figure 2-2: Printing the Binary Representation of an Float Number

float x;
Union {

float a_float;
unsigned an_int;

} overlay

overlay.a_ float = x /* avoid a type conversion * /
printf(”%x”, overlay.an_int); /* avoid a type conversion * /

©
 C

op
yi

ng
 o

f t
hi

s
do

cu
m

en
t,

an
d

gi
vi

ng
 it

 t
o

ot
he

rs
 a

nd
 th

e
us

e
or

 c
om

m
un

ic
at

io
n

of
 th

e
co

nt
en

ts
 t

he
re

of
, a

re
 fo

rb
id

de
n

w
ith

ou
t e

xp
re

ss
 a

ut
ho

rit
y.

 O
ffe

nd
er

s
ar

e
Ha

bl
e t

o
th

e
pa

ym
en

t o
f d

am
ag

es
. A

ll r
ig

ht
s

ar
e

re
se

rv
ed

 in
 th

e
ev

en
t o

f t
he

gr
an

t o
f a

 p
at

en
t o

r t
he

 re
gi

st
ra

tio
n

of
 a

 U
til

ity
 m

od
el

 o
r d

es
ig

n.

2.3.1

N I X D O R F
C O M P U T E R

01.01.86 UNIX Operating System Release Description Page 3-1

Language Support

Language Support

Nixdort’s Implementation of C allows users to convert existing applica-
tion programs from their UNIX-based operating Systems to the Nixdorf
UNIX Operating System. In most cases, this conversion will be tran
sparent to the user. This chapter describes the implementation of
Nixdort’s language support and the effect of architecture on machine-
dependent programs written in C.

©
Co

py
in

g
of

 th
is

 d
oc

um
en

t,
an

d
gi

vi
ng

 it
 t

o
ot

he
rs

 a
nd

 t
he

 u
se

 o
r c

om
m

un
ic

at
io

n
of

 t
he

 c
on

te
nt

s
th

er
eo

f,
ar

e
fo

rb
id

de
n

w
ith

ou
t

ex
pr

es
s

au
th

or
ity

.
O

ffe
nd

er
s

ar
e

lia
bl

e
to

 th
e

pa
ym

en
t

of
 d

am
ag

es
.

A
ll

rig
ht

s
ar

e
re

se
rv

ed
 i

n
th

e
ev

en
t

of
 th

e
gr

an
t o

f a
 p

at
en

t
or

 th
e

re
gi

st
ra

tio
n

of
 a

 u
til

ity
 m

od
el

 o
r d

es
ig

n.

C Support

The UNIX Operating System provides a standardized environment for
the development and execution of programs written in C. The UNIX
Operating System currently provides facilities for source level (sym-
bolic) debugging, code generation, and runtime execution supporting
Nixdort’s implementation of C.
• Symbolic debugging. A common interface is used for symbolic

debugging at the source level, providing a consistent set of debug
ging tools for the C language.

• Code generation. A common code generator ensures conformity with
the Nixdorf procedure call Standards and Optimum use of the perfor-
mance of the TARGON /35 register-intensive instruction set.

• Runtime execution. Uniform procedure calls allow calls to a common
library of runtime routines.

Implementation of Language Support Features

The UNIX Operating System implements the a.out and ar files dif-
ferently than do other Systems that are based on the UNIX Operating
System. The following paragraphs describe this implementation.

3.2

Page 3-2 UNIX Operating System Release Description 01.01.86

Language Support

3.2.1 Format of a.out and ar Files

Because of the way that the UNIX Operating System uses the a.out
and ar files, the format of the a.out and ar files differs from that in
UNIX System V. The format of these files in the UNIX Operating Sys
tem is based on the format of the a.out and ar files in the 4.2BSD
enhancements to the UNIX Operating System.

The format of the a.out fite is:

long a_magic; /* magic number * /
unsigned a_text; /♦ size of text segment * /
unsigned a_ data; /* size of data segment * /
unsigned a_bss; /* size of bss segment * /
unsigned a_syms; /* size of symbol fable * /
unsigned a_entry; /* entry point of program */
unsigned a_trsize; /♦ size of text relocation info * /
unsigned a_drsize; /* size of data relocation * /

The format of the ar file is:

char ar_name[16]; /* archive member name * /
char ar_ date[12]; /* archive date * /
char ar_uid[6]; /* archive user Identification * /
char ar_gid[6]; /* archive group Identification * /
char ar_mode[8]; /* archive member mode * /
char ar_size[10]; /♦ archive member size * /
char ar_fmag[2]; /* * /

3.2.1

N I X D O R F
C O M P U T E R

01.01.86 UNIX Operating System Release Description Page 3-3

Language Support

Effects of TARGON /35 Architecture on Application Programs

The TARGON /35 architecture may affect machine-dependent applica-
tion programs in certain ways. The following paragraphs describe how
programs may be affected.

©
Co

py
in

g
of

 th
is

 d
oc

um
en

t,
an

d
gi

vi
ng

 it
 to

 o
th

er
s

an
d

th
e

us
e

or
 c

om
m

un
ic

at
io

n
of

 th
e

co
nt

en
ts

 t
he

re
of

,
ar

e
fo

rb
id

de
n

w
ith

ou
t

ex
pr

es
s

au
th

or
ity

.
O

ffe
nd

er
s

ar
e

lia
bl

e
to

 th
e

pa
ym

en
t

of
 d

am
ag

es
.

A
ll

rig
ht

s
ar

e
re

se
rv

ed
 i

n
th

e
ev

en
t

of
 th

e
gr

an
t

of
 a

 p
at

en
t

or
 th

e
re

gi
st

ra
tio

n
of

 a
 U

til
ity

 m
od

el
 o

r d
es

ig
n.

Performing Shift Operations in C

The TARGON /35 machine may perform shift operations differently
than other machines. On the Nixdorf machine, the shift operators < <
and > > group from left to right. Each of these operators performs the
usual arithmetic conversions on its operands; each Operand must be
integral. The right Operand is then converted to int and the type of left
Operand indicates the type of the result. If the right Operand is nega
tive, or greater than or equal to the length of the object in bits, the
result is undefined.

n00

For example:

shift-expression:
expression < < expression
expression > > expression

The value of E1<<E2 is E1, interpreted as a bit pattem, and is shifted
E2 bits to the left. Vacated bits are 0-filled. The value of E1>>E2 is E1,
shifted E2 bits to the right. If E1 is unsigned, the right shift will be logi-
cal, or O-filled. Otherwise, the right shift will be arithmetic, or filled by a
copy of the sign bit.

C
O Passing Parameters

Some machine-dependent programs may require modification because
of the way in which UNIX Operating System calling sequences affect
programs written in C. The specific characteristics of the UNIX Operat
ing System calling sequences that may necessitate program modifica
tion are described below.

3.3.2

Page 3-4 UNIX Operating System Release Description 01.01.86

Language Support

• Parameters cannot be implicitly passed via register variables.

If any Compilers on non-Nixdorf machines have allowed Parameters
to be passed via register variables, this was due to accident and not
design.

• Programs cannot contain a variable number of Parameters.
A C program cannot work through an argument list and determine
the point at which it must leave the Parameter registers and enter
the data stack. However, to accommodate certain forms of access
to "regulär” variable arguments, the varargs macros in
/usr/include/varargs.h may be used.

• Type conflicts may exist between calling and called subroutines.
The command lint should be used whenever possible to check for
these conflicts.

• Struct/union Parameters are pushed onto the data stack, whether or
not they will fit into a single register or a register pair.

• Figure 3-1 shows Code that cannot be executed on the TARGON /35
machine because of the way the TARGON /35 treats struct/union
Parameters and because of the typing rules of the C language.
Figure 3-2 shows an example of the same mechanics in a non-
subroutine call environment. The typing rules of C make this State
ment explicitly illegal also.
The recommended sequence is shown in Figure 3-3.

3.3.2

N I X D O R F
C O M P U T E R

01.01.86 UNIX Operating System Release Description Page 3-5

Language Support

Figure 3-1: Type Conflicts in Parameters

Union x {
int a;
char b[4];

}
main ()

union x abc;

subl (abc); /* WRONG! * /
subl ((int) abc); /* WRONG! */

}
subl (arg)
int arg;
{
}

©
Co

py
in

g
of

 th
is

 d
oc

um
en

t,
an

d
gi

vi
ng

 it
 to

 o
th

er
s

an
d

th
e

us
e

or
 c

om
m

un
ic

at
io

n
of

 t
he

 c
on

te
nt

s
th

er
eo

f,
ar

e
fo

rb
id

de
n

w
ith

ou
t

ex
pr

es
s

au
th

or
ity

.
O

ffe
nd

er
s

ar
e

lia
bl

e
to

 th
e

pa
ym

en
t

of
 d

am
ag

es
.

A
ll

rig
ht

s
ar

e
re

se
rv

ed
 i

n
th

e
ev

en
t

of
 th

e
gr

an
t

of
 a

 p
at

en
t

or
 th

e
re

gi
st

ra
tio

n
of

 a
 u

til
ity

 m
od

el
 o

r d
es

ig
n.

Figure 3-2: Type Conflicts in Assignments

union x {
int a;
char b[4];

}
main ()
{

union x abc;
int xyz;

xyz = abc; /* Illegal Statement * /
xyz = (int) abc; /* Illegal Statement * /

3.3.2

Page 3-6 UNIX Operating System Release Description 01.01.86

Language Support

Figure 3-3: Fixing Type Conflicts in Parameters

union x {
int a;
char b[4];

}
main ()
{

union x abc;

{int i; i=abc.a subl (i);}
subl (abc.a);

}
subl (arg)
int arg;
{
}

• Parameters are pushed on to the data stack from right to left.

Arguments that are assigned to tr/pr registers, however, are
assigned from left to right; that is, the left-most parameter is placed
in register trO/prO.

• If the called subroutine issues an ADSF instruction, then (cfp), after
executing ADSF, is the first word of the last parameter pushed on to
the data stack.

• If the calling procedure places any data on the data stack to place
Parameters for a subroutine call, the stack must be popped by the
procedure by an appropriate amount immediately after the call.

• The parameter to RETD must always be 0 since the caller is respon-
sible for cleaning up the stack.
If the called program performs an ADSF either to accommodate
Parameters that it expects on the data stack or to allocate tem-
poraries, the program must perform an RETD instruction rather than
an RET instruction.

3.3.2

N I X D O R F
C O M P U T E R

01.01.86 UNIX Operating System Release Description Page 3-7

Language Support

• If there is a type mismatch between the calling and called programs
where the actual parameter is struct/union and a single werd quan-
tity is expected, all subsequent Parameters will be incorrect within
the parameter registers. All previous and subsequent data stack
Parameters will also be incorrect.

©
Co

py
in

g
of

 th
is

 d
oc

um
en

t,
an

d
gi

vi
ng

 it
 to

 o
th

er
s

an
d

th
e

us
e

or
 c

om
m

un
ic

at
io

n
of

 th
e

co
nt

en
ts

th

er
eo

f,
ar

e
fo

rb
id

de
n

w
ith

ou
t

ex
pr

es
s

au
th

or
ity

.
O

ffe
nd

er
s

ar
e

lia
bl

e
to

 th
e

pa
ym

en
t

of
 d

am
ag

es
.

A
ll

rig
ht

s
ar

e
re

se
rv

ed
 i

n
th

e
ev

en
t

of
 th

e
gr

an
t o

f a
 p

at
en

t
or

 th
e

re
gi

st
ra

tio
n

of
 a

 u
til

ity
 m

od
el

 o
r d

es
ig

n.

G
O

G
O

G
O Implementing Varargs Macros in the Varargs.h Header

Another way that the TARGON /35 architecture affects machine-
dependent programs is in its treatment of variable length argument
lists. If the user abides by the conventions of varargs, variable length
argument lists can always be accessed. Also, varargs.h is a Standard
System header in the UNIX Operating System, and all of its capabilities
have been implemented in the UNIX Operating System.

There are several ways to handle functions that permit a variable
number of arguments. If the maximum number of arguments is known,
the user can simply define the function with that number of arguments.

For example:

debugC’at main %d %x”, argo, argv);
debug(”read(%d, %d, %d) gives %d”, f, buf, n, ret);

debug(fmt, a1, a2, a3, a4, a5) /* 5 arguments max * /
{

printf(fmt, a1, a2, a3, a4, a5)
}

This solution to the variable number of arguments problem is simple,
easy to understand, and reliable. However, in the case where the max
imum number of arguments is not known or is inconveniently large, the
user should use the Standard UNIX Operating System varargs.h mac
ros.

3.3.3

Page 3-8 UNIX Operating System Release Description 01.01.86

Language Support

Not all arguments to a function reside on the user data stack as an
array of words. However, despite the Problems posed by the control
and data stack, the Nixdorf Implementation of the varargs macros is
functionally equivalent to that of other non-Nixdorf machines based on
the UNIX Operating System.

3.3.4 Addressing Bytes in a Specific Order

The order in which bytes are addressed on the Nixdorf machine may
differ from that of other machines. On the Nixdorf machine, bytes are
numbered from left to right. Thus, byte 0 is the most significant byte.
Because some non-Nixdorf architectures number their bytes differently
from the TARGON /35 architecture, Code sequences sometimes exist
which take advantage of this difference in numbering. Upon examina-
tion, these code sequences are offen incorrect, since they usually
involve an illegal type conversion.

The following code sequence is incorrect:

{ int c;
read(0, &c, 1); /* read a single character into c * /
printf (”%c\n”, c);

}

A correct sequence is either:

{ char c;
read(0, &c, 1);
printf (”%c\n”, c);

}

Or:

{ int c;
read(0, &c, 1);
printf(”%c\n”, ((char *) &c) [0]);

}

3.3.4

N I X D O R F
C O M P U T E R

01.01.86 UNIX Operating System Release Description Page 3-9

Language Support

Evaluating Parameters in a Specific Order

The TARGON /35 architecture causes Parameters to be evaluated in a
different order than on a non-Nixdorf machine based on the UNIX
Operating System. The program in Figure 3-4 illustrates the Order in
which Parameters are evaluated. Figure 3-5 illustrates the program’s
behavior on a non-Nixdorf machine, while Figure 3-6 illustrates the
program’s current behavior on the TARGON /35 System. Since the
order of parameter evaluation is implementation dependent, the Output
of this program is subject to change with future revisions of the Com
piler.

©
 C

op
yi

ng
 o

f t
hi

s
do

cu
m

en
t,

an
d

gi
vi

ng
 it

 to
 o

th
er

s
an

d
th

e
us

e
or

 c
om

m
un

ic
at

io
n

of
 th

e
co

nt
en

ts
 t

he
re

of
, a

re
 fo

rb
id

de
n

w
ith

ou
t

ex
pr

es
s

au
th

or
ity

. O
ffe

nd
er

s
ar

e
lia

bl
e

to
 th

e
pa

ym
en

t o
f d

am
ag

es
. A

ll r
ig

ht
s

ar
e

re
se

rv
ed

 in
 th

e
ev

en
t o

f t
he

\

gr
an

t o
f a

 p
at

en
t o

r t
he

 re
gi

st
ra

tio
n

of
 a

 u
til

ity
 m

od
el

 o
r d

es
ig

n.

y

G
O

G
O

cn

3.3.5

Page 3-10 UNIX Operating System Release Description 01.01.86

Language Support

Figure 3-4: Sample Program Illustrating Parameter Evaluation

main ()
{

int i;

i = 0;
abc(i++ I i++,i++,i++ 1 i++ 1 i++ 1 i++ I i++ i i++ i i++ i i+-i- i i++ i i++ i i++ i i++);
printfC’After abc i = %d0,i);
exit(O);

}
abc(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o)
int a,b,c,d,e,f,g,h,i,j,k,l,m,n,o;
{
ttdefine xx(yy) printf(”yy = % dO.yy);

xx(a);
xx(b);
xx(c);
xx(d);
xx(e);
xx(f);
xx(g);
xx(h);
xx(i);
xx(j);
xx(k);
xx(l);
xx(m);
xx(n);
xx(o);

}

3.3.5

N I X D O R F
C O M P U T E R

01.01.86 UNIX Operating System Release Description Page 3-1 1

Language Support

Figure 3-5: Output Program from a Non-Nixdorf Compiler

a = 14
b = 13
c = 12
d = 11
e = 10
f = 9
g = 8
h = 7
i - 6
j = 5
k = 4
I - 3
m = 2
n = 1
o = 0
After abc i = 15

©
 C

op
yi

ng
 o

f t
hi

s
do

cu
m

en
t,

an
d

gi
vi

ng
 it

 t
o

ot
he

rs
 a

nd
 th

e
us

e
or

 c
om

m
un

ic
at

io
n

of
 th

e
co

nt
en

ts
 t

he
re

of
, a

re
 fo

rb
id

de
n

w
ith

ou
t

ex
pr

es
s

au
th

or
ity

.
O

ffe
nd

er
s

ar
e

lia
bl

e
to

 th
e

pa
ym

en
t o

f d
am

ag
es

. A
ll r

ig
ht

s
ar

e
re

se
rv

ed
 in

 th
e

ev
en

t o
f t

he
gr

an
t o

f a
 p

at
en

t o
r t

he
 re

gi
st

ra
tio

n
of

 a
 u

til
ity

 m
od

el
 o

r d
es

ig
n.

Figure 3-6: Output from the Current TARGON /35 Compiler

a = 4
b = 5
c = 6
d = 7
e = 8
f = 9
g = 10
h = 11
i = 12
j = 13
k = 14
I = 3
m = 2
n = 1
o = 0
After abc i = 15

3.3.5

Page 3-12 UNIX Operating System Release Description 01.01.86

Language Support

The Order in which function Parameters are evaluated is not specified.
Thus, the following Statement produces different results on different
machines:

printf (”%d %d\n”, ++n, power(2, n)); /* WRONG * /

The result depends on whether n is incremented betöre power is
called. The following Statement solves the problem:

++n;
printf (”%d %d\n”, n, power(2, n));

Function calls, nested arguments, and increment and decrement Opera
tors cause ”side effects”. Side effects result when some variable is
changed as a byproduct of the evaluation of the expression. In an
expression that involves side effects, there may be dependencies on
the order in which variables that take part in the expression are stored.
The following is an undesirable Statement:

a[i] = i++;

The Compiler can determine in various ways whether the subscript is
the new or the old value of i and, depending on its interpretation, pro-
duce different answers. Because the best order strongly depends on
machine architecture, the Compiler determines the time of the assign
ment to actual variables.

Thus, code written in any language should not depend on the order in
which Parameters are evaluated. The C verifier lint will, however, detect
most dependencies on the order of evaluation.

3.3.5

N I X D O R F
C O M P U T E R

01.01.86 UNIX Operating System Release Description Page 3-13

Language Support

Setting Local Auto Variables

The setting of local auto variables to any value should not be
expected. (A non-Nixdorf machine may accidentally get a zero.)

co

©
 C

op
yi

ng
 o

f t
hi

s
do

cu
m

en
t,

an
d

gi
vi

ng
 it

 to
 o

th
er

s
an

d
th

e
us

e
or

 c
om

m
un

ic
at

io
n

of
 th

e
co

nt
en

ts
 t

he
re

of
, a

re
 fo

rb
id

de
n

w
ith

ou
t

ex
pr

es
s

au
th

or
ity

. O
ffe

nd
er

s
ar

e
Ha

bl
e t

o
th

e
pa

ym
en

t o
f d

am
ag

es
. A

ll r
ig

ht
s

ar
e

re
se

rv
ed

 in
 th

e
ev

en
t o

f t
he

gr
an

t o
f a

 p
at

en
t o

r t
he

 re
gi

st
ra

tio
n

of
 a

 u
til

ity
 m

od
el

 o
r d

es
ig

n.

Storing Data Structures

The storage layout of data structures differs from that of other
machines and may change in future releases of the product.

3.3.7

N I X D O R F
C O M P U T E R

01.01.86 UNIX Operating System Release Description Page 4-1

UNIX Operating System Commands and Facilities

UNIX Operating System Commands and Facilities

The commands and facilities available with the UNIX Operating System
fall into major categories with subsections as follows:
1. Commands and Application Programs. These programs are invoked

directly by the user or by command language procedures. Classifi-
cations of these commands are:
1. General-purpose commands
1C. Communications commands
1G. Graphics commands

2. System Calls. These programs function as entries into the UNIX
Operating System kernel, which includes the C language interface.

3. Subroutines. The binary versions of these subroutines reside in vari-
ous libraries within the System file structure. Classifications of sub
routines are:
3C. C and Assembler library routines
3M. Mathematical library routines
3S. Standard I/O library routines
3X. Miscellaneous routines

4. Special Files. These files are used by the UNIX Operating System
Administrator.

5. File Formats. This section describes the format of certain kinds of
files.

6. Miscellaneous Facilities. These facilities consist of character sets
and macro packages.

7. System Maintenance Commands. These Commands are used by
the UNIX Operating System Administrator.

Note: Manual pages for all UNIX-supported commands and facilities
are available online as follows:
$ man name
where name is the name of the desired command or facility.

©
C

op
yi

ng
 o

f t
hi

s
do

cu
m

en
t,

an
d

gi
vi

ng
 it

 to
 o

th
er

s
an

d
th

e
us

e
or

 c
om

m
un

ic
at

io
n

of
 th

e
co

nt
en

ts
 th

er
eo

f,
ar

e
fo

rb
id

de
n

w
ith

ou
t e

xp
re

ss
 a

ut
ho

rit
y.

 O
ffe

nd
er

s
ar

e
lia

bl
e

to
 th

e
pa

ym
en

t o
f d

am
ag

es
. A

ll
rig

ht
s

ar
e

re
se

rv
ed

 in
 th

e
ev

en
t o

f t
he

gr
an

t o
f a

 p
at

en
t o

r t
he

 r
eg

is
tr

at
io

n
of

 a
 u

til
ity

 m
od

el
 o

r d
es

ig
n.

4

N I X D O R F
C O M P U T E R

01.01.86 UNIX Operating System Release Description Page A-1

Index

Appendix Index

a.outfile 3.2.1
arfi le 3.2.1
array Parameters 2.2
att 1.2

C 3.1
char and short Parameters 2.2
OLE 1.1
code generator 3.1
Common Language Environment 1.1
control stack 2.1
control stack frame 2.1

data stack 2.1
dual-port System 1.2

floating point mechanism 2.3

IEEE floating point Standard 2.3, 2.3.1

pointer Parameters 2.2©
C

op
yi

ng
 o

f t
hi

s
do

cu
m

en
t,

an
d

gi
vi

ng
 it

 to
 o

th
er

s
an

d
th

e
us

e
or

 c
om

m
un

ic
at

io
n

of
 th

e
co

nt
en

ts
 th

er
eo

f,
ar

e
fo

rb
id

de
n

w
ith

ou
t e

xp
re

ss
 a

ut
ho

rit
y.

 O
ffe

nd
er

s
ar

e
lia

bl
e

to
 th

e
pa

ym
en

t o
f d

am
ag

es
. A

ll
rig

ht
s

ar
e

re
se

rv
ed

 in
 th

e
ev

en
t o

f t
he

gr
an

t o
f a

 p
at

en
t o

r t
he

 r
eg

is
tr

at
io

n
of

 a
 u

til
ity

 m
od

el
 o

r d
es

ig
n.

scalar and float returns 2.2
shift operations 3.3.1
struct/union Parameters 2.2
structure returns 2.2
symbolic debugging 3.1

temporary/parameter registers 2.2

ucb 1.2
universe 1.2
UNIX Operating System kernel 1.1
unsigned char and short Parameters 2.2
uucp 1.1

Appendix

